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Abstract

Oosterhuis and Coskun recently proposed a new model for applying the Six Sigma concept to laboratory measurement processes. In criticizing the 
conventional Six Sigma model, the authors misinterpret the industrial basis for Six Sigma and mixup the Six Sigma “counting methodology” with 
the “variation methodology”, thus many later attributions, conclusions, and recommendations are also mistaken. Although the authors attempt 
to justify the new model based on industrial principles, they ignore the fundamental relationship between Six Sigma and the process capability 
indices. The proposed model, the Sigma Metric is calculated as the ratio CVI/CVA, where CVI is individual biological variation and CVA is the observed 
analytical imprecision. This new metric does not take bias into account, which is a major limitation for application to laboratory testing processes. 
Thus, the new model does not provide a valid assessment of method performance, nor a practical methodology for selecting or designing statistical 
quality control procedures.
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Short communication

Oosterhuis and Coskun recently proposed a new 
model for applying the Six Sigma concept to labo-
ratory measurement processes (1). Unfortunately, 
the authors misinterpret the industrial basis for Six 
Sigma and misuse the “counting” methodology in-
stead of the “variation” methodology early in the 
development of the model, thus many later attri-
butions, conclusions, and recommendations are 
also mistaken. 

Although the authors attempt to justify the new 
model based on industrial principles, they ignore 
the fundamental relationship between Six Sigma 
and the process capability indices Cp and Cpk. 
Such indices were widely used in industry prior to 
the formalization of Six Sigma in the 1990s and 
provide the proper framework for understanding 
the development of Six Sigma (2). Cp is a perfor-
mance index that is calculated from the difference 

between the upper and lower tolerance limits and 
the variation observed for the production process:

Cp = (TLu – TLl)/6SD (Eq. 1).

where TLu is the upper tolerance limit, TLl the low-
er tolerance limit, and SD is the standard deviation 
for the observed process variation, as illustrated in 
Figure 1 (A). The distribution of measurements is 
assumed to be Gaussian (normal) around the tar-
get value (TV). For laboratory testing processes, it 
is common to express the tolerance limits in terms 
of an allowable total error (ATE, TEa), or pTE, the 
abbreviation chosen by the authors for the per-
missible total error. Give that TLu = TV + pTE, and 
TLl = TV – pTE,

Cp = [(TV + pTE) – (TV – pTE)]/6SD = 
2pTE/6SD = pTE/3SD (Eq. 2).
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Ideally, the process should operate with a Cp of 
2.0, which means that ± 6 SDs or a total of 12 SDs 
of process variation should fit between the toler-
ance limits. In industry, a minimum Cp of 1.0 is 
considered essential for routine operation and a 
Cp of 1.33 is preferred. Knowledge of this relation-
ship led to recommendations in 1990 for changing 
process acceptance criteria from 2SD < pTE to 4SD 
< pTE as a minimum and recommending further 
improvements to 5SD-6SD<pTE for critical medical 
applications (3). These recommendations were 
made long before the Six Sigma methodology was 
first formally applied to laboratory processes (4). 

A limitation of Cp is that it assumes the process is 
centered on the TV, therefore it cannot account for 
any shift that might occur. Another capability in-
dex, Cpk, takes “centerness” into account and 
therefore provides a better metric for assessing 
performance of a laboratory testing process (5):

Cpk = min [(μ – TLl)/ 
3SD, (TLu – μ)/3SD] (Eq. 3).

where μ represents the mean observed for the dis-
tribution. As shown in Figure 1 (B), “centerness” is 
characterized by the bias of a testing process, 
which is the difference between TV and μ. Bias 
causes a systematic shift of the measurement dis-
tribution, moving it closer to one of the tolerance 
limits. Under this condition, process performance 
is best described as the minimum value, i.e. [(pTE – 
Bias)/SD] or [(Bias – pTE)/SD]. This can also be ex-
pressed as (pTE - |Bias|), where |Bias| is the absolute 
value of the bias. 

Cpk = (pTE - |Bias|)/3SD (Eq. 4).

or

3Cpk = (pTE - |Bias|)/ 
SD = Sigma Metric (Eq. 5).

Thus, the conventional calculation of a Sigma Met-
ric is directly related to the traditional industrial 
process capability index Cpk. The minimum ac-
ceptable Cpk of 1.0 is equivalent to SM = 3.0, a Cpk 
of 1.33 that is recommended to achieve a more 
controllable process corresponds to SM = 4.0, and 

the goal for excellent performance is a Cpk of 2.0, 
which corresponds to SM = 6.0 for world class 
quality. 

Oosterhuis and Coskun state that the “pTE – Bias 
term does not reflect the tolerance limit concept used 
in industry”. The “Observed bias” in this context 
comes from the industrial concept and refers to 
the lack of “centerness” in Cpk, not the TE model. 
They misunderstand that the observed method 
bias is subtracted from the tolerance limit pTE be-
cause it narrows the region for acceptable perfor-
mance. Bias accounts for the lack of “centerness” 
of the production distribution and is completely 
consistent with the industrial concept of Cpk, not a 
“clear contradiction with the Six Sigma concept” as 
claimed by the authors. 

Another mistake is that the authors mix-up the Six 
Sigma “counting methodology” with the “varia-
tion methodology”. The counting methodology is 
used when inspecting products to identify de-
fects, whereas the variation methodology is em-
ployed when process variation can be measured 
directly, which is the case for laboratory testing 
processes where regulation and accreditation 
guidelines actually require the laboratory to verify 
the precision and bias of their testing processes. 
The counting methodology employs a table based 
on the normal distribution to convert the ob-
served number of defects expressed as DPMO (de-
fects per million opportunities) to a sigma metric. 
As part of the counting methodology, it has been 
assumed that process drift equivalent to system-
atic errors of the magnitude 1.5 times the SD of 
the process may occur and go undetected. There-
fore, the conversion table called “long-term Sig-
ma” builds that shift into the numbers. Another ta-
ble, called short-term Sigma, does not include that 
shift and is consistent with the variation method-
ology. (See Bayat for a detailed discussion of short-
term and long-term sigmas (6).) The problem for 
the authors is their interpretation that “in the mod-
el used in laboratory medicine, in addition to the 1.5 
SD shift, the measured bias is also included…”. That 
is not correct. The conventional laboratory SM 
model is based on variation, not counting, there-
fore it does not assume a 1.5 SD shift. Instead, the 
size of a medically important shift is calculated to 
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mine the probability for error detection (Ped) for 
this critical shift and the probability of false rejec-
tion (Pfr) for stable operating conditions (without 
this shift). Observe that the upper x-axis in Figure 2 
represents a sigma scale and the lower y-axis the 
scale for the size of the critical SE, based on the re-
lationship:

ΔSEcrit = SM - 1.65 (Eq. 7), 

or

ΔSEcrit +1.65 = SM (Eq. 8).

Therefore, the Sigma-Metric (SM) can provide 
guidance for the selection and design of SQC pro-
cedures, as well as a metric for assessing the quali-
ty of performance for a testing process. 

In addition to these major mistakes in the devel-
opment of the new model, they further confuse 
the Six Sigma performance assessment model 
with a different goal-setting model for pTE, then 
combine the two models and make erroneous at-
tributions based on the new model. The result is 

Figure 1. Relation of Sigma Metric (SM) to industrial process 
capability indices (Cp, Cpk) and process control metric (ΔSEcrit) 
for SQC selection and design. ΔSEcrit - critical systematic error. 
TL - tolerance limit. TV - target value. Μ - observed mean. pTE - 
permissible total error. Bias - observed trueness. SD - observed 
imprecision.

guide the selection and design of statistical quali-
ty control (SQC) procedures and optimize the de-
tection of medically important errors (7). This SQC 
selection or design metric is called the critical sys-
tematic error, ΔSEcrit, and represents the size of the 
systematic error that must be detected to main-
tain the quality of the production process, as 
shown in Figure 1 (C): 

ΔSEcrit = [(pTE - |Bias|)/SD] - 1.65 (Eq. 6),

where 1.65 is a z-value that defines a maximum 5% 
risk of reporting erroneous test results when a crit-
ical systematic shift occurs (8). Statistical quality 
control performance is then assessed from power 
function graphs, as shown in Figure 2, to deter-

Figure 2. Quality planning tool for selection/design of SQC pro-
cedures having 2 levels of controls. The probability for rejection 
is plotted on y-axis versus the size of systematic error on bot-
tom x-axis and the sigma-metric on the top x-axis. In the key 
at the right, the different power curves correspond, top to bot-
tom, to the list of control rules, the probability for false rejec-
tion (Pfr), total number of control rules (N), and number of runs 
(R) over which the rules are applied. This chart was produced 
by the EZ Rules3 computer program. Vertical line represents ex-
amination procedure with observed sigma-metric of 4.0.  
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that the SM is calculated as the ratio CVI/CVA, 
where CVI is the tolerance limit stated as an impre-
cision goal based on individual biological variation 
and CVA is the observed analytical imprecision. 
This new metric does not take bias into account, 
which is a major limitation for application to labo-
ratory testing processes. Furthermore, this model 
ignores other approaches for defining tolerance 
limits that are commonly employed, e.g., the use 
of acceptable performance limits in proficiency 

testing and external quality assessment schemes. 
Thus, the new model does not provide a valid as-
sessment of method performance, nor a practical 
methodology for selecting or designing SQC pro-
cedures, while also limiting the application of 
widely accepted test acceptability criteria that 
have been defined for pTE. 
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