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Abstract

Six Sigma methodology has been used successfully in industry since the mid-1980s. Unfortunately, the same success has not been achieved in la-
boratory medicine. In this case, although the multidisciplinary structure of laboratory medicine is an important factor, the concept and statistical 
principles of Six Sigma have not been transferred correctly from industry to laboratory medicine. Furthermore, the performance of instruments and 
methods used in laboratory medicine is calculated by a modified equation that produces a value lower than the actual level. This causes unnece-
ssary, increasing pressure on manufacturers in the market. We concluded that accurate implementation of the sigma metric in laboratory medicine 
is essential to protect both manufacturers by calculating the actual performance level of instruments, and patients by calculating the actual error 
rates.
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Introduction

Six Sigma methodology is the latest version of to-
tal quality management and has been widely used 
in industry since the mid-1980s. One of the most 
powerful aspects of Six Sigma is its universal appli-
cability to various fields including business, health 
care, and laboratory medicine. Unfortunately, de-
spite great success of the Six Sigma methodology 
in industry, the same success has not been 
achieved in laboratory medicine. 

Quality principles have not been applied to labo-
ratory medicine as rigorously as industry. Interest-
ingly (probably psychologically), the expected 
success or error rates in industry and laboratory 
medicine are not the same. For example, in labora-
tory medicine, 4 Sigma quality is accepted as a 
success, but in the aviation sector the target is 7 
Sigma. 

Although the principles of the Six Sigma method-
ology are universal, calculations of the sigma met-
ric (SM) in industry and laboratory medicine differ. 
The reasons for the different calculation of SM in 
laboratory medicine need to be investigated. In 
our previous studies, we have shown that the con-
ventional equation used to calculate SM in labora-
tory medicine is different from the equation used 
in industry (1). Additionally, the standard equation 
for SM has not been transferred correctly from in-
dustry to laboratory medicine (1-3). Therefore, the 
equation used to calculate SM in laboratory medi-
cine should be critiqued and corrected.

In this paper, we aimed 1) to explain the statistical 
techniques of how engineers calculate short and 
long-term SM and error rates in industry and busi-
ness, and 2) to show the defects of the SM equa-
tion used in laboratory medicine. 



Biochem Med (Zagreb) 2019;29(1):010902  https://doi.org/10.11613/BM.2019.010902 

2

Coskun A. et al. Sigma metric revisited

Sigma metric in industry and business

In industry, SM is calculated as given below (Equa-
tion (Eq.) 1):

SM = TR
2SD (Eq. 1).

where TR is the tolerance range of the product, 
and SD is the standard deviation of the process. 
Tolerance range can be calculated from the sub-
traction of lower tolerance limit (LTL) from the up-
per tolerance limit (UTL) (UTL – LTL). At the 6 Sig-
ma quality level, 12 SD fit between the lower and 
upper TLs, i.e., 6 SD fits between the target and 
LTLs/UTLs. 

The SM value indicates the performance of the 
process; the lower the SM value the process has, 
the higher error rate the process produces. To illus-
trate further, we explain the meaning of SM in 
terms of errors. For this purpose, we use defects 
per million opportunities (DPMO), which is the 
number of defective products within 1 million op-
portunities. For example, if DPMO is 1000, it means 
that within 1 million opportunities 1000 products 
are defective, and the rest are acceptable. The con-
version of SM to DPMO and vice versa makes Six 
Sigma methodology a powerful tool in both in-
dustry and business. It serves as a bridge between 
counting and variation methodology and there-
fore it is accepted as a universal tool to measure 
the performance of processes in both industry and 
business. In laboratory medicine, only variation or 
counting variables cannot be used to evaluate the 
performance of the whole laboratory. For exam-
ple, in analytical phase the main variable is SD but 
in pre-pre-analytical phase it is DPMO. Therefore, 
in a Six Sigma project of total testing process, we 
have to convert all data to DPMO and then focus 
on the phase which is the center of errors/defects. 

The SMs and corresponding DPMOs are given in 
Table 1. As shown in Table 1, for each SM value 
there are 2 different DPMOs, short and long terms 
(4). In daily practice we prefer the long-term DPMO 
(4). It has been questioned why we prefer long-
term SM. No system is perfect and every process 
deviates from its target in time. The Six Sigma 

methodology was developed and applied to pro-
cesses by William B. Smith and Motorola Inc. engi-
neers. During the early period of observations, en-
gineers found that processes deviated approxi-
mately 1.5 SD from the targets. In a given time in-
terval, we do not know the exact shift (bias) from 
the target. Acceptance of a 1.5 SD shift from the 
target is a form of insurance in estimating the 
quality of the process. Therefore, engineers in in-
dustry usually include the 1.5 SD shift from the tar-
get and calculate the DPMO corresponding to the 
SM accordingly.

Next, we examine how engineers calculate the 
DPMO corresponding to short and long-term SM. 
The calculation of DPMO (both short and long 
term) is based on the normal distribution curve. 
The equation of the normal distribution function is 
given below (Eq. 2).

f(x) = 1
σ   2π

e
(x – μ) 

2σ– [
2

2 ] (Eq. 2).

where f(x) is the normal distribution function, σ is 
the standard deviation, μ is the mean, and x is a 
variable. 

The DPMO corresponding to SM is derived from 
the area under the curve (AUC) restricted by LTL 
and UTL as calculated below (Eq. 3):

AUC =   
1

σ   2π
e

(x – μ) 
2σ– [

2

2 ]UTL

LTL
d (x)∫ (Eq. 3).

This equation gives AUC but is rather complex to 
be used in daily practice. For simplicity, we use the 
standard normal distribution curve. In this curve, 
the target is 0 and SD is 1. 

To calculate the DPMO corresponding to SM, in 
the first step, we calculate the AUC restricted by 
LTL and UTL. The total AUC (-∞ to +∞) is 1. The er-
ror rate is 1-AUC and therefore the DPMO can be 
calculated as given below (Eq. 4): 

DPMO = 106 (1 – AUC) (Eq. 4).

Although this equation is very simple, we still must 
calculate the restricted AUC, which is not easy. To 
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overcome this problem, we use tables instead of 
complex equations. For the standard normal dis-
tribution curve, we use the z table. 

To calculate the DPMO corresponding to SM, we 
find the AUC from the LTL to UTL from the z table 
and use Eq. 4. For example, to calculate the DPMO 
corresponding to 5 SM, we find the AUC restricted 
by - 5 to 5 from z table and then use Eq. 4 as given 
below:

AUC from − 5 to 0 = 0.4999997133

AUC from 0 to 5 = 0.4999997133

AUC from − 5 to 5 = 0.9999994266

DPMO = 106 (1 − 0.9999994266) = 0.57.

This is the short-term DPMO, but in daily practice 
we use the long-term SM and corresponding 
DPMO. To calculate the long term DPMO we in-
clude the shift in the calculations. In this case we 
find the AUC from (- shift - LTL) to (UTL + Shift) 
from the z table. For example, if we want to calcu-
late the long-term DPMO of 5 SM we find the AUC 
from − 6.5 to 3.5. Due to the 1.5 SD shift, the limit 
of the left tail of the curve is − 6.5 (−1.5 - 5) and the 
limit of the right tail of the curve is 3.5 (5 -1.5) (Fig-
ure 1). 

The DPMO corresponding to SMs are calculated 
using Eq. 4 as given below:  

AUC from − 6.5 to 0 = 0.4999999999

AUC from 0 to 3.5 = 0.4997673709

AUC from − 6.5 to 3.5 = 0.9997673708

DPMO = 106 (1 - 0.9997673708) = 233.

Figure 1. To calculate the long-term DPMO of 5 SM we find the 
area under the curve from − 6.5 to 3.5. Due to the 1.5 SD shift, 
the limit of the left tail of the curve is − 6.5 (− 1.5 - 5) and the 
limit of the right tail of the curve is 3.5 (5 - 1.5). The DPMO cor-
responding to SMs are calculated using Eq. 4.   

SM
Long Term Short Term

ZLTL (AUC) ZUTL (AUC) ZUTL-LTL (AUC) DPMOL ZLTL (AUC) ZUTL (AUC) ZUTL-LTL (AUC) DPMOS

1.0 (0.493790335) (- 0.191462461)* (0.3023278735) 697,670 (0.3413447458) (0.3413447458) (0.6826894917) 317,310

1.5 0.498650102 0.0000000000 0.498650102 501,350 0.4331927985 0.4331927985 0.8663855971 133,610

2.0 0.499767371 0.191462461 0.6912298320 308,770 0.4772498679 0.4772498679 0.9544997359 45,500

2.5 0.499968329 0.341344746 0.8413130746 158,690 0.4937903346 0.4937903346 0.9875806693 12,420

3.0 0.499996602 0.433192799 0.9331894009 66,810 0.498650102 0.498650102 0.9973002039 2700

3.5 0.499999713 0.477249868 0.9772495813 22,750 0.499767371 0.499767371 0.499767371 465

4.0 0.499999981 0.493790335 0.9937903156 6210 0.499968329 0.499968329 0.9999366575 63

4.5 0.499999999 0.498650102 0.9986501010 1350 0.499996602 0.499996602 0.9999932047 6.8

5.0 0.4999999999 0.499767371 0.9997673709 233 0.499999713 0.499999713 0.9999994267 0.57

5.5 0.4999999999 0.499968329 0.9999683278 32 0.499999981 0.499999981 0.9999999620 0.04

6.0 0.4999999999 0.499996602 0.9999966013 3.4 0.499999999 0.499999999 0.9999999980 0.002

We use z score and z table to calculate the DPMOs corresponding to SMs. Area under the curve (AUC) obtained from z table. *Due 
to 1.5 SD shift in long term SM, the ZUTL is higher than UTL and therefore the AUC of ZUTL was subtracted from the AUC of ZLTL. 
SM – Sigma metric. LTL - lower tolerance limit. UTL – upper tolerance limit. DPMO – defects per million opportunities. 

Table 1. Defects per million opportunities corresponding to long and short term sigma metrics 

Target 0 3.5– 6,5

LTL ULT1.5 SD Shift

A1 A2
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Figure 2. A linear relation is present in uniform distributions (A), but not in normal distributions (B). Moving the mean to the right or 
left increases or decreases the AUC linearly in the uniform distribution, but not in the normal distribution. Therefore, inclusion of bias 
as a linear component in Eq. 5 is mathematically not valid. The SD of uniform distribution is [(b-a)/12]1/2.

From these simple examples we can see that both 
short and long term DPMOs are calculated using 
the standard normal distribution curve (Table 1). 
However, in daily practice it is not necessary to use 
complex mathematical equations. We can use Eq. 
1 to calculate SM and then Table 1 to find the cor-
responding DPMO. Engineers in industry use Eq. 1 
and Table 1 to calculate SM and DPMO easily. 

Sigma metric in laboratory medicine

In laboratory medicine literature, the scientific 
background of Six Sigma methodology is not well 
understood. In our previous studies we aimed to 
implement the corrected SM in laboratory medi-
cine and calculate the performance of the instru-
ments accurately, but it seems that there are still 
misunderstandings in the field (1-3). For example, 
recently Bayat criticized our paper and stated that 
“Coskun et al. confused the short-term/long-term 
concept with the one-sided/two-sided concept. The 
reason that the calculated defect rates in the Coskun 
et al. calculations are significantly lower than the 
Westgard approach is that they have neglected the 
1.5 SD subtraction.” (1,5). We believe that our paper 
is a seminal paper and had not been read in detail 
by Bayat (1). In the paper, we criticized all aspects 
of the defects of the SM calculation method in lab-
oratory medicine. Additionally, we never neglect-
ed the 1.5 SD subtraction, but treated it correctly. 

In laboratory medicine, a different equation is 
used to calculate SM as given below (Eq. 5):

SM = TR* – Bias
SD (Eq. 5).

TR* is the range from the center (target) to UTL or 
LTL. This equation is different from the main SM 
equation (Eq. I), it includes bias and structurally 
similar to process capability index (Cpk) as given 
below (Eq. 6):

Cpk = min μ – LTL
3SD

UTL – μ
3SD

,(                           ) (Eq. 6).

where µ is the mean of the process. 

It should be noted that SM and Cpk are not the 
same. Sigma metric is linked to DPMO and must 
be interpreted correctly. The difference between 
SM and Cpk is the subject of another paper and 
cannot be summarized in this short paper. 

There are two major drawbacks of calculating SM 
from Eq. 5.

1. Mathematical defects and illogical results. We 
derive SM and DPMO from the normal distribution 
curve but the relation between these parameters 
is not linear. A linear relation is present in uniform 
distributions, not in normal distributions (Figure 
2). As shown in Figure 2, moving the mean to the 

a bMeanMean-1SD Mean+1SD MeanMean-1SDMean-2SD Mean+1SD Mean+2SD

Uniform Distribution Normal Distribution

A B

13.6% 13.6%34.1% 34.1%
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LTL UTL Target Bias CV SM ZLTL (AUC) ZUTL (AUC) ZLTL-UTL (AUC) DPMO

Urea nitrogen, mg/dL

16 24 20 3.0 1.0 1 - 7.0 (0.4999999999) 1 (0.3413447458) - 7 to + 1 
(0.8413447458) 158,650*

16 24 20 2.0 2.0 1 - 3.0 (0.4986501019) 1 (0.3413447458) - 3 to + 1 
(0.8399948477) 160,000

16 24 20 0.0 4.0 1 - 1.0 (0.3413447458) 1 (0.3413447458) - 1 to + 1 
(0.6826894917) 317,310**

Low-density lipoprotein cholesterol, mg/dL

88 112 100 3.0 3.0 3 - 5.0 (0.4999997133) 3 (0.4986501020) - 5 to + 3 
(0.9986498153) 1350*

88 112 100 1.5 3.5 3 - 3.9 (0.4999433065) 3 (0.4986501020) - 3.9 to + 3 (0.9985934084) 1410

88 112 100 0.0 4.0 3 - 3.0 (0.4986501020) 3 (0.4986501020) - 3 to + 3  (0.9973002039) 2700**

For the same SM, we can obtain various DPMOs. In this table for simplicity we show only three different DPMOs corresponding to 
the same SM. For the same test, the DPMO of (**) is approximately 2 times higher than the DPMO of (*). LTL - lower tolerance limit. 
UTL – upper tolerance limit. CV – coefficient of variation. SM – Sigma metric. DPMO – defects per million opportunities. AUC - Area 
under the curve 

Table 2. Linear treatment of bias in standard normal distribution curve creates nonsense results

Figure 3. A normal distribution curve is a two-sided curve 
(from −∞ to +∞) and the tails of the curve do not intersect the 
x-axis. Bias might be on the right or left side of the mean. Even if 
the bias is larger than UTL or LTL, the performance of a working 
process is always higher than zero. Normal distribution curve is 
the mathematical reference of both SM and DPMO. Negative 
SM cannot be obtained from normal distribution curve. 

right or left increases or decreases the AUC linearly 
in the uniform distribution but not in the normal 
distribution. Inclusion of bias as a linear compo-
nent in Eq. 5 is mathematically not valid. In statis-
tics there are various distributions types and for 
SM we must follow the mathematics of normal dis-
tribution (6).

Equation 5 is a one-sided and linear treatment of 
bias open to illogical results such as negative Sig-
ma. If the bias is larger than UTL/LTL, according to 
Eq. 5, SM will be a negative value (Figure 3). Nega-
tive performance is meaningless, in both theory 
and practice. The lowest level of the performance 
of a process is zero, not a negative value. A nega-
tive SM would mean that the process produces 
more errors than there are opportunities. For ex-
ample, if we have 1 million products the maximum 
error rate is 1 million (all products are defective). It 
is not logical to state that more than 1 million 
products of 1 million products are defective.  

Mathematically we can show that the perfor-
mance of a working process is always > 0 (Figure 
3). The performance of the process is derived from 
the AUC restricted by LTL and UTL. The normal dis-

tribution curve is a two-sided curve (from −∞ to 
+∞) and the tails of the curve do not intersect the 
x-axis and therefore the AUC is always > 0.  

In industry for a given SM value, we have one short 
(no shift) and one long term (shift is 1.5 SD) DPMO. 
But according to Eq. 5, for a given SM value we 

Bias

SM > 0

Defect

Defect

MeanUTLTargetLTL

A1
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have one short (no shift) but can obtain a lot of 
long term DPMOs. For example, if SM = 1, the 
short-term DPMO will be 317,310 (Table 1), but the 
long-term SM may correspond to various DPMOs 
such as 697,670 (Table 1), 158,650, 317,310 (Table 2) 
or even a different value. This is because Eq. 5 has 
two variables: bias and CV. If we change the values 
of bias and CV, we can obtain different DPMOs cor-
respond the same SM (Table 2). This is a clear con-
tradiction. In mathematics and philosophy this is a 
typical example of reductio ad absurdum. The in-
clusion of bias as a linear component cause absurd 
results. 

2. Application defect. If we include bias directly, 
we must use the short-term DPMO, not the long-
term DPMO. For example, if the TR, Bias, and SD of 
a process are 12, 4, and 2 respectively, then accord-
ing to Eq. 5 (although mathematically it is not cor-
rect) the SM will be 4. Now the question is what is 
the DPMO corresponding to 4 Sigma. The answer 
is 63, not 6200 (Table 1). Because we know the shift 
of the process, we must use the DPMO corre-
sponding to the short-term SM. Unfortunately, in 
various papers (and in laboratory practice), bias is 
directly included in the equation of SM, and the 
DPMO corresponding to the long-term SM is used. 
If we use Eq. 5 in the performance calculations of 
analysers, methods, reagents, and other instru-
ments, we will obtain performance values signifi-
cantly lower than the actual levels. This results 
from two biases: the bias directly included in the 
equation, and the 1.5 SD shift accepted as the nat-
ural bias. This false low performance level will in-
crease pressure on the manufacturers in the mar-
ket. Additionally, the fact that one SM corresponds 
to various DPMO makes the application of Eq. 5 
meaningless in laboratory medicine. 

Conclusion

As mentioned previously, engineers in industry 
use Eq. 1, in which bias is not directly included, be-
cause mathematically it is not valid. Instead of di-
rectly including bias, they prefer to use the long-
term DPMO corresponding to SM. This approach 
has two important advantages: first, the equation 
is very simple and it is easy to calculate the perfor-
mance of a process using the TR and SD. Second, 
in daily practice we do not know whether bias ex-
ists or not, and therefore we accept the presence 
of a 1.5 SD shift in any case. This assumption pro-
tects the process performance evaluation from 
the possible presence of biases. 

The approach used in laboratory medicine has se-
rious defects. First, it includes bias measured in 
laboratory and uses DPMO corresponding to long 
term SM. It should be noted that, in laboratory 
medicine, the bias measurement methods differ 
among laboratories and some of them are defec-
tive, thus the results may not be reliable. The SM 
calculated using Eq. 5 will be very low; conse-
quently the DPMO will be very high. This results 
from two biases: the measured bias, and the 1.5 
SD shift. In this case, the calculated performance 
of the process will be incorrect, significantly lower 
than the actual performance level, causing serious 
trouble for manufacturers in the market. To over-
come this problem we have two choices. First, we 
can perform the calculations as engineers do in in-
dustry, by only using TR and SD to calculate SM, 
and then use the long-term DPMO. Second, if we 
include bias we should use z score and z table to 
calculate short term DPMO. 
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