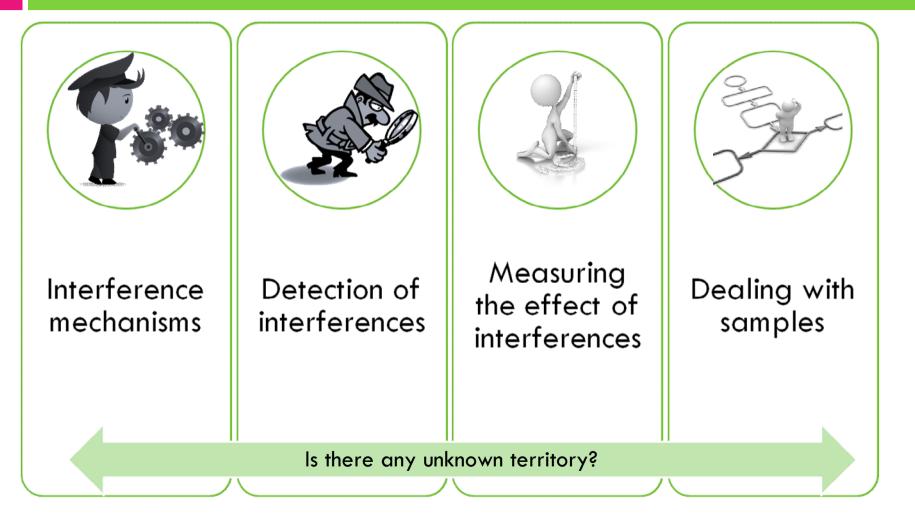
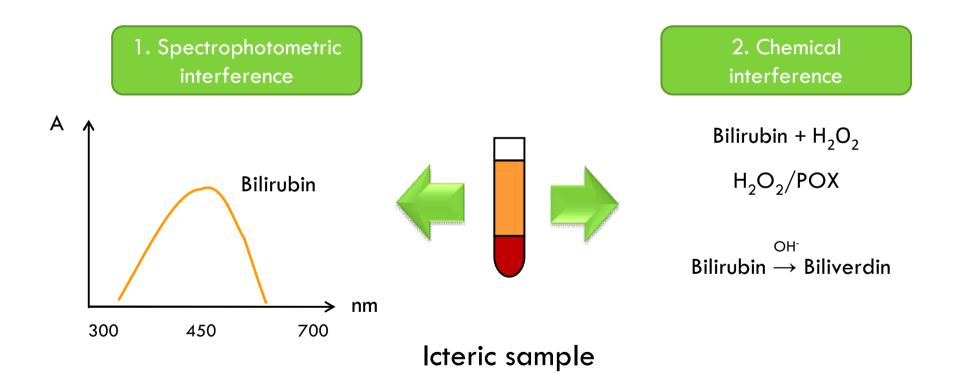
ANALYTİCAL İNTERFERENCES -CONTİNUOUS CHALLENGE İN THE CLİNİCAL LABORATORY


Nora Nikolac

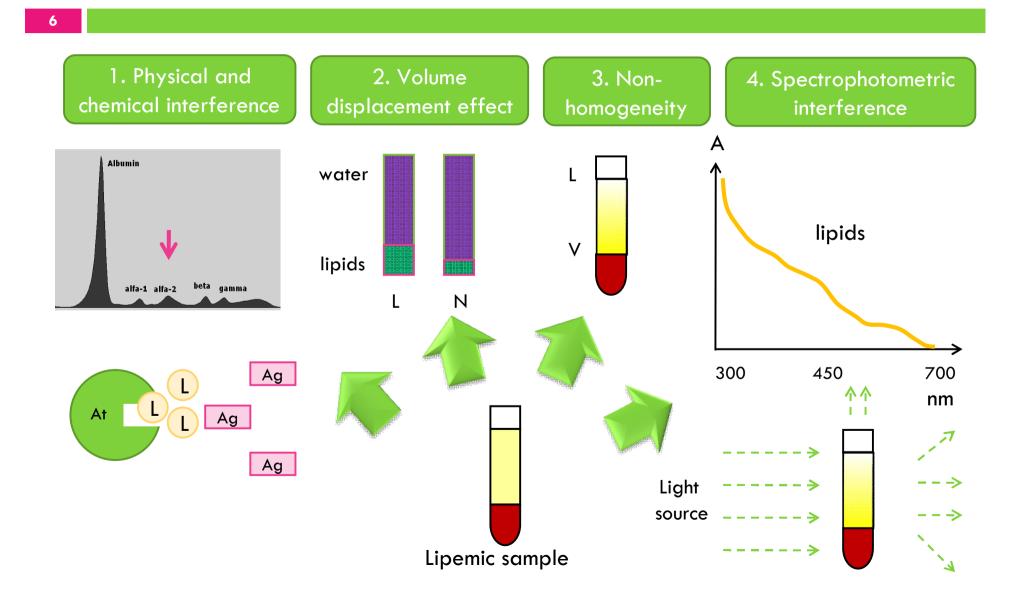
University Department of Chemistry, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia

March 28, 2015

expoMED 2015, Istanbul, Turkey


Key issues in interference management

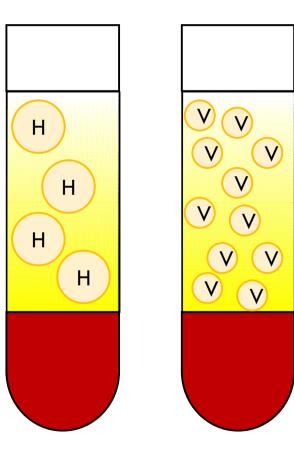
Icteric sample



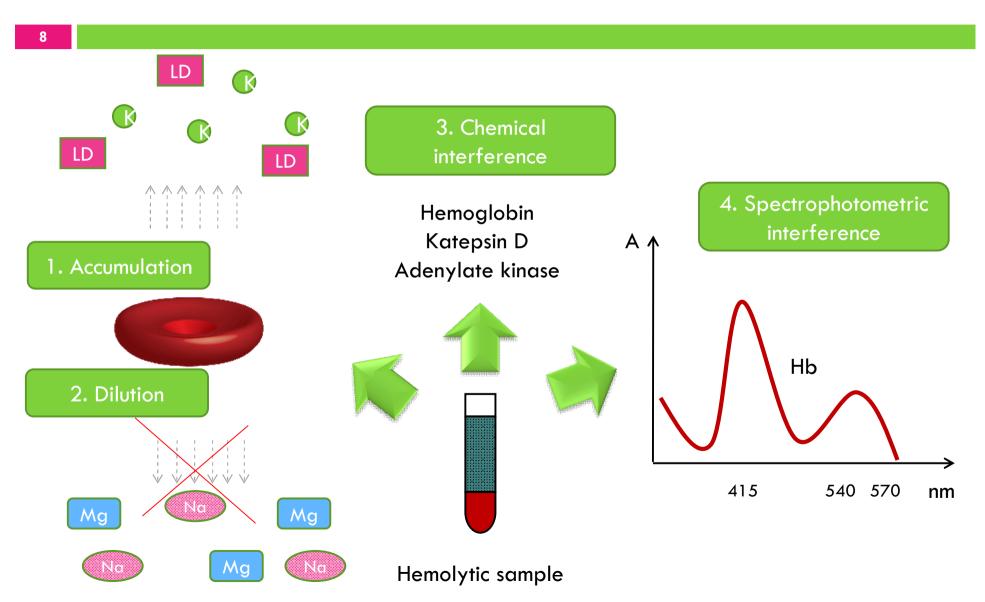
Differences in icteric sample

COOR COOH COOH COOR Glucuronic acid UDPglucuronyl transferase 0 ο 0 Ο **Unconjugated bilirubin Conjugated bilirubin**

Oxidation in alkaline pH (creatinine) Inorganic phosphates


Lipemic sample

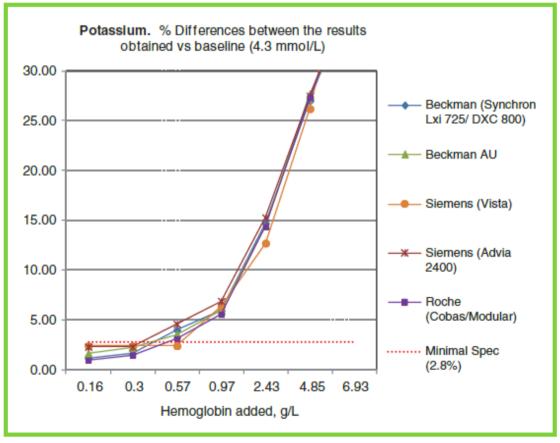
Differences in lipemic sample


Same degree of turbidity! (L index)

Lipemia caused by larger chylomicrons

Lipemia caused by smaller VLDL

Hemolytic sample

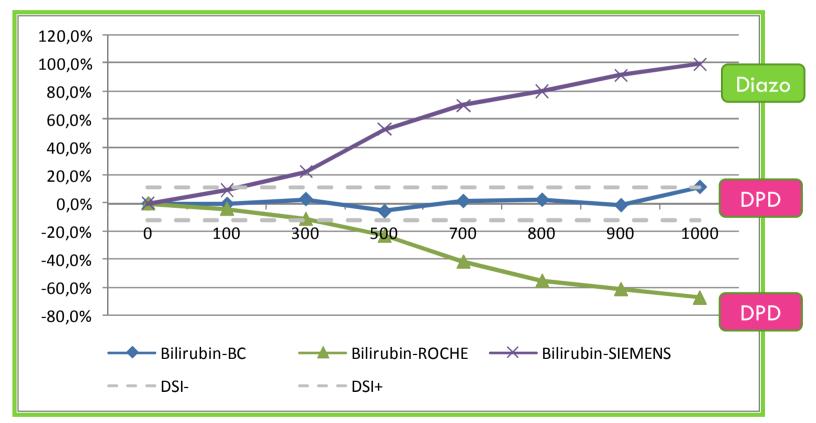

In vivo vs. in vitro hemolysis

9

In vitro	Parameter	In vivo
$\uparrow \uparrow \uparrow$	LD	$\uparrow \uparrow \uparrow$
$\uparrow \uparrow \uparrow$	Free Hb	N/↑
Ν	Haptoglobin	\downarrow
$\uparrow \uparrow \uparrow$	К	N/↑
Ν	Reticulocytes	$\uparrow \uparrow \uparrow$

Universal degree and direction

Potassium and hemolysis



Fernandez P, et al. Harmonization in hemolysis detection and prevention. A working group of the Catalonian Health Institute (ICS) experience. Clin Chem Lab Med. 2014 Nov;52(11):1557-68.

Method and reagent specific interferences

11

Bilirubin and lipemia

Nikolac N, Simundic AM, Miksa M, Lima-Oliveira G, Salvagno GL, Caruso B, Guidi GC. Heterogeneity of manufacturers' declarations for lipemia interference – urgent call for standardization. Clin Chim Acta 2013;426:33-40.

Visual detection

Clin Chem Lab Med 2009;47(11):1361-1365 © 2009 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2009.306

Comparison of visual vs. automated detection of lipemic, icteric and hemolyzed specimens: can we rely on a human eye?

				Kappa (95% Cl)
			Lipemia	0.70 (0.63–0.77)
CA-ZE	VS.	Car Jas	Hemolysis	0.62 (0.54–0.70)
			lcteria	0.48 (0.24–0.72)
				Kappa (95% CI)
			lipomia	Kappa (95% CI)
	VS.		Lipemia	Kappa (95% Cl) 0.56 (0.42–0.69)
CUTCH	vs.		Lipemia Hemolysis	

Simundic AM, Nikolac N, et al. Comparison of visual versus automated detection of lipemic, icteric and hemolyzed specimens: can we rely on a human eye? Clin Chem Lab Med 2009;47(11):1361-5.

Serum indices

14

Standardization

- Negligible cost
- Negligible TAT increase

Systematical assessment of serum indices does not impair efficiency of clinical chemistry testing: A multicenter study

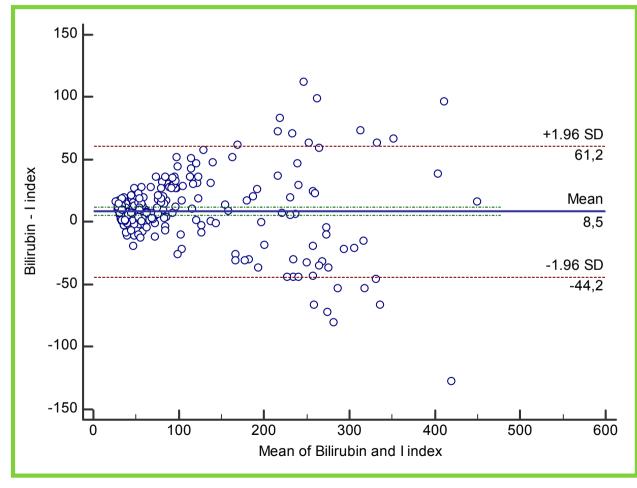
Giuseppe Lippi ^{a,*}, Paola Avanzini ^a, Daniele Campioli ^b, Giorgio Da Rin ^c, Mariella Dipalo ^a, Rosalia Aloe ^a, Davide Giavarina ^d, Gian Luca Salvagno ^e

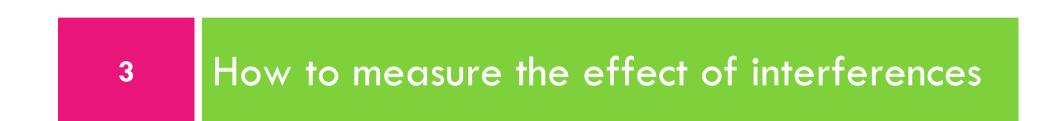
TAT on 5 analytical platforms: -0.2 to +5.0% (-3 to +85 s)

Verification of the serum indices

Precision

Accuracy


- L index: Amount of added Intralipid® (concentration of TG)
- I index: Amount of added bilirubin (concentration of bilirubin)
- H index: Concentration of hemoglobin
- Comparability
- Cross-reactivity
- IQM no calibrators and controls!



Accuracy

16

I index and bilirubin, Abbott Architect c8000

Investigation protocols

CLSI documents

Verification of data

1. Acceptance criteria

19

1st EFLM Strategic Conference Defining analytical performance goals 15 years after the Stockholm Conference

Milan (IT) 24-25 November 2014 1. Goals based on analytical performance related to clinical outcomes

2. Goals based on biological variation

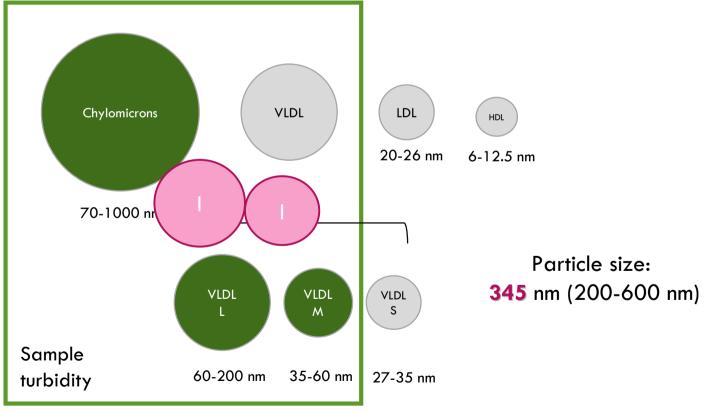
		ia based o analytical			Ma	nufacturer	S
	2 x SD	CVw	DSI	TE	BC	R	S
Potassium	1.6%	4.8%	2.4%	2.2%	Not declared	10%	10%
Bilirubin	2.1%	23.8%	11.9%	19.1%	10%	10%	20%

Manufacturers use arbitrary criteria of 5% or 10%!

2. Choosing the interferent - Icteria

- Adding bilirubin powder into clear samples (CLSI)
- Conjugated and unconjugated bilirubin differ in effects
- Difficult dissolving of bilirubin
- Alkaline solution can change pH of the sample

SIGMA
Bilirubin Product Number B 4126 Storage Temperature -0 °C
Product Description Molecular Formula: $C_{33}H_{36}N_4O_6$ Molecular Weight: 584.7 CAS Number: 635-65-4 Extinction Coefficient: $E^{1\%} = 1020 (453 \text{ nm}, \text{CHCl}_3)$ $E^{mM} = 60 (453 \text{ nm})$


2. Choosing the interferent - Lipemia

Adding Intralipid® solution into clear samples (CLSI)

Synthetic fat emulsion used for parenteral diet

21

Intralipid induced lipemia differs from native lipemia!

2. Choosing the interferent - Lipemia

Spiking clear samples with the lipemic patient pool

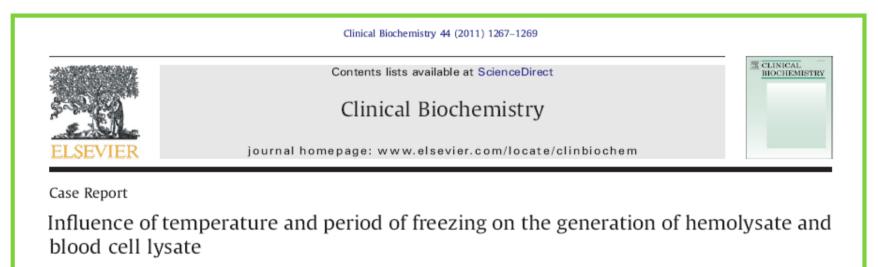
Large amount of pool

22

- Freezing changes properties of particles
- Heterogeneous lipemic pool (different lipoproteins)
- □ Failure to replicate study

2. Choosing the interferent - Hemolysis

Adding hemolysate prepared by osmotic shock procedure into clear sample (CLSI)


- All mechanisms of interference can't be tested by this protocols
 - analytes accumulating in the cell in pathological samples
 - some drugs

23

2. Choosing the interferent - Hemolysis

Freezing of the sample

Giuseppe Lippi *, Roberta Musa, Rosalia Aloe, Mariella Mercadanti, Silvia Pipitone

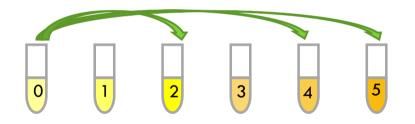
12 hours at -20°C or 2 hours on -80°C

Can't be used for analytes that can't be freezed!

2. Choosing the interferent - Hemolysis


Aspiration of full blood using syringe

- Syringe diameter and number of replicates can create good hemolysis scale
- Imitates hemolysis in vitro
- □ Lyses other cells (i.e. leukocytes)



3. Choosing the analyte concentrations

At least 6 interferent concentrations (0 + 5)

Low or normal analyte concentration

CLSI EP7-A2 Appendix B

High or critical analyte concentration

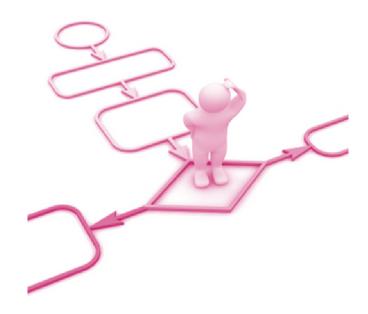
		Inte	erferent o	concentr	ations	
	0	C 1	C2	C3	C4	C5
Hemoglobin (g/L)	0	0.5	1.25	2.5	5.0	10.0
Intralipid (mg/dL)	0	100	300	500	1000	2000
Bilirubin (µmol/L)	0	43	120	257	513	1026

4. Reporting the results

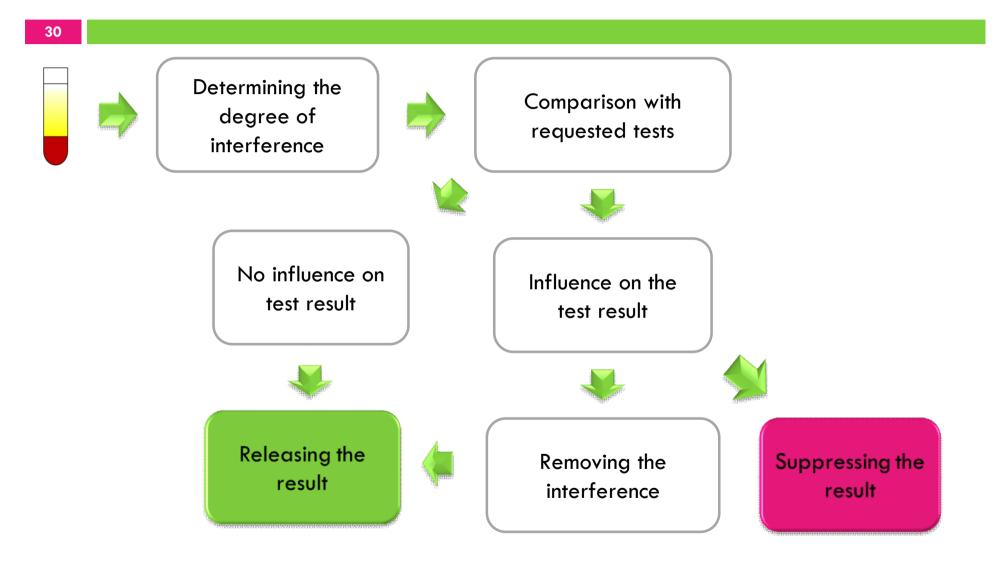
 Manufacturers should 	Reagent, manufacturer	Hemolysis information
declare:	ACE (Bulhman Laboratories)	Do not analyze
Materials used to	Acid phosphatase (Sentinel)	No interference up to 0.15 g/dL Hb
create interferences	Ammonia (Randox)	NH ₃ = 50 μ mol/L: No interference up to 125 mg/dL Hb
Interferent		$NH_3 = 300 \ \mu mol/L: No interference$ up to 250 mg/dL Hb
concentration	Glucose (Abbott)	Glucose = $4.3 \text{ mmol/L: } 4.4\% (10 \text{ g/L})$
Analyte concentration		Hb), 8.3% (20 g/L Hb) Glucose = 6.6 mmol/L: 1.7% (10
Allowable error		g/L), 4.0% (20 g/L)
Unstandardized and incomplete data!	Lactate (Beckman Coulter)	< 5% up to 5 g/L Hb
	Cholinesterase (Ortho Clinical Diagnostics)	< 0.3 U/mL up to 150 mg/dL Hb

5. Verification of results

	Clinica Chimica Acta 426 (2013) 33-40	
	Contents lists available at ScienceDirect	CLINICA
ş-ş-	Clinica Chimica Acta	CHIMICA ACTA
ELSEVIER	journal homepage: www.elsevier.com/locate/clinchim	
interference –	of manufacturers' declarations for lipemia - An urgent call for standardization	CrossMark
interference – Nora Nikolac ^{a,*,1} ,	of manufacturers' declarations for lipemia	

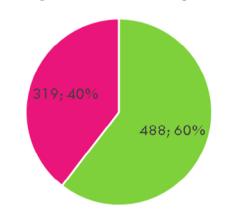

DE GRUYTER

Clin Chem Lab Med 2014; 52(11): 1557–1568


Pilar Fernandez, María Antonia Llopis, Carmen Perich*, Maria Jesús Alsina, Virtudes Alvarez, Carmen Biosca, Gloria Busquets, Maria Vicenta Domenech, Rubén Gómez, Isabel Llovet, Joana Minchinela, Rosa Pastor, Rosa Ruiz, Ester Tarrés, Mercè Ibarz, Margarita Simón and Mercè Montesinos

Harmonization in hemolysis detection and prevention. A working group of the Catalonian Health Institute (ICS) experience Failure to verify manufacturers claims for lipemia and hemolysis!

Dealing with unsuitable samples

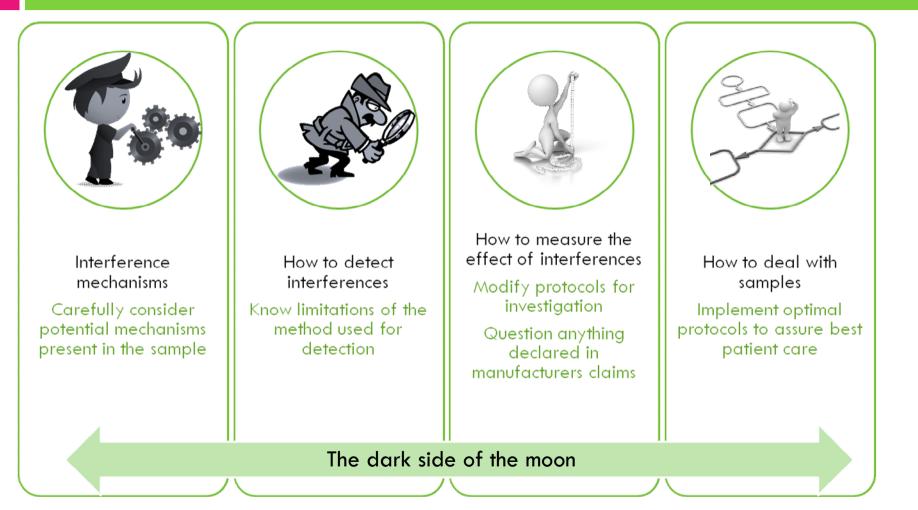


Manual vs. Automatic protocol

Retroactive analysis of the manual protocol:

31

I week , 4443 samples, 807 hemolysed samples (18.1%)


Supressing and releasing the results

Correct Incorrect

Implementation of automatic protocol

- Suppressing all tests influenced by hemolysis
- Releasing all tests not influenced by hemolysis

Key issues in interference management

Thank you on your attention.